XMT-3000 Intelligent Digital Display Temperature Controller USER MANUAL

Please read this manual thoroughly for the instruction of correct usage before using this product and keep this manual as a reference.

CAUTION WHEN OPERATING

- Before cleaning the controller, please ensure that the power is switch off.
- Please remove stains on the display panel by using a soft cloth only.
- No scrubbing or touching the display panel with any hard object, the display panel can be easily scratched.
- Do not press any button on the display panel using pointy objects such as ballpoint pen or screw driver, it can easily scratch the panel or damage buttons on the panel.

I. Confirmation of the product

This product is suitable for using to control temperature in the equipments of the industries of injection molding, extrusion, bottle blowing, foodstuff, package, printing, constant temperature drying, metal heat treating and etc. This product is an intelligent instrument whose PID parameters can be auto-tuning, and then its employing method is very convenient. So this product is an optimum renewal instrument to replace the older generation of the pointer electronic controller and analog digital temperature controller. This product meets the requirements stipulated by the industrial standard of Q/SQG01-1999 for the intelligent digital display instrument.

Please according to the following codes to affirm whether or not that your product received is in full agreement with the model that you selected:

(1) Dimensions of the panel in millimeters D: 96×96 E: 72×72 F: 96×48(Vertical Type) F (H): 48×96(Horizontal Type) G: 48×48 **2**Series Code 3: Dual-Rows Display (Economical Model) **③Control** Type 4: On/off PID control (heating) 9: Continuous PID Control (heating) (4) Alarm Output 1 **⑤Alarm Output 2** 0: Without Alarm 1: Upper Limit Deviation Alarm 2: Lower Limit Deviation Alarm 3: Upper and Lower Limit Deviation Alarm (With hold) 4: Upper Limit Absolute Value Alarm

5: Lower Limit Absolute Value Alarm 6: Upper and lower limit deviation range alarm 7: Upper and lower limit deviation alarm (without hold) **©Output** Type Empty: Relay (Maximum 3A) V: Logical Level Output Used for SSR I1: 0~10mA Continuous Current I2: 4~20mA Continuous Current **(7)Input Type** K(0-999) J(0-79) E(0-600) PT100(-99-500) PT(0.0-99.9) CU50(0.0-99.9) **8LRL 9URL (10)**Additional Control Omit: no ON/OFF control ON/OFF: has ON/OFF control

II. Installation

2.1 Caution when installing

Please install the controller in the following environment conditions:

- Temperature: 0 to 50 degrees C Atmospheric pressure: 8 to 106kPa
- Humidity: 45% to 85% RH

Please avoid the following conditions during installation:

- . Rapid temperature changes, leading to dew condensation.
- Corrosive gases (especially sulfide gas, ammonia, etc.) or flammable gases.
- Direct vibration or shock
- Contact with water, oil, chemicals, steam, smoke, or hot water
- High concentrations of atmospheric dust, salt or iron particles
- Large inductive interference, resulting in static electricity, magnetic fields or noise.
- Direct sunlight.
- Radiant heat sources, etc

2.2 MountingProcess

(1)Cut out rectangle holes on the panel for installing the controller according to the required hole size.

When installing more than one controller, the minimum horizontal and vertical distance between

- two holes should be 25mm and 30mm respectively.
- (2) Insert the controller into the hole on the panel.

- Accessories: Two mounting brackets
- (3) Insert mounting bracket in the slot for mounting the controller. One copy of manual

(4) Push the mounting bracket tightly to connect the instrument and the panel firmly

2.3 Dimension in millimeters

Model	H×B	h×b×L	h'×b'
XMTD	96×96	92×92×70	(92+1)×(92+1)
XMTE	72×72	68×68×70	(68+1)×(68+1)
XMTF	96×48	92×44×70	(92+1)×(44+1)
XMTF(H)	48×96	44×92×70	(44+1)×(92+1)
XMTG	48×48	44×44×70	(44+1)×(44+1)

2.4 Key Performance

1)Measurement accuracy: 0.5%±1dig 3)Operation Temperature: $0 \sim 50$

4)Fuzzy PID control

2)Power: 220VAC or 85-264VAC

5)This product conforms with the "Q/SQG011999 Intelligent Digital Display Adjustor" Standard Regulation.

III.Wiring

3.1 Caution when wiring

(1)Please use the specified compensation wire for thermocouple input.

(2)Please use the specified compensation wire for thermocouple input

(3)To avoid the influence of inductive noise, input signal wires should be separated from electric power lines or load lines.

3.2 Wiring Terminals

IV. Configuration of Controller's Panel

(PV) Present Value Display (RED)

- Display Measured Value.
- Display variety of prompt symbols according to the controller status.
- (SV) Set Value Display (GREEN)
- Display Set point Value.
- Display the variety of parameters according to controller status.

Indicator

- Auto-tuning indicator (AT), flash green during operating.
- Control output indicator (OUT), solid green when active.
- Alarm output indicator (ALM), solid red when active.

Function Key

- Call out, update and confirm parameters. SHIFT KEY: [<<]</pre>
- Select the parameter and the On/Off state of the control output as required.
 - ▼ 、 ▲ Adjusting Key
- To adjust numbers and start/quit auto tuning.

V. Operation

5.1 Sequence of the variety of functions

5.2 Functional Description Specification

- After the controller is switched on, the PV display window shows Inp and SV display shows the graduation mark of the temperature sensor. After 2 seconds, the PV display shows the upper limit of the measurement range and the SV display shows the lower limit of the measurement range. After 2 more seconds, the PV display shows the Measurement Value and the SV display shows the Set Point Value then the system will get into its normal operation state.
- How to set the temperature value: Press the SET key, the PV display shows SP value. Press the
 ▲

 key so the number needs change flashes, then press the ▼ or ▼ key until the desired value is reached on the SV display. Press SET KEY, system return to its standard model state.
- How to set the Control Parameters': Pressing the SET KEY more than 4 seconds, the PV display window will show the prompt symbol of the control parameter (Details are listed in the table below). P. Press the << > key so the number needs change flashes, then press the ▲ or the

 key to reach the desired value. Keep pressing the SET key, the PV display window will show individual parameters symbol accordingly, press the << > key so the number needs change flashes, then press the ▲ or the
 key to reach the needed value for individual parameter. Press the SET KEY again for more than 4 seconds, system will return to its standard model state.
- If oooo is appeared on the lower part of the PV display window, the thermocouple is connected in the reverse order. If oooo is appeared on the upper part of the PV display window, the thermocouple is in open circuit state or the measured temperature exceeded limit of upper or lower boundary.
- The Auto-tuning Function for the controller: After pressing the ▲ KEY for more than 4 seconds, the AT indicator will flash, the controller starts its Auto-Tuning process. When the AT indicator is off, the new PID parameter will be applied.

• ON/ OFF control: Under PV/SV display mode, press the << KEY for more than 4 seconds to stop the output, the indicator will turn off, the SV display window will display OFF, which means the controller has manually turn off output. Then press << key for more than 4 seconds, it will return to normal state.

5.2 Table of Parameters:

5.2 Tab Prompt Symbol	Name	Setting Range	Illustration	Beginning Value
AL1	Alarm 1 Setting	0…Range ℃	Setting of Alarm 1, Insensitive interval of alarm is equal to a constant value 0.4	50 or 50.0
AL2	Alarm 2 Setting	0Range °C	Setting of Alarm 2, Insensitive interval of alarm is equal to a constant value 0.4	50 or 50.0
р Р	Proportional band	0300 °C	Proportional action adjusts: The more the value of P, the less the proportional action and the less the system gain. (P=0 is ON/OFF Control, ArH is the upper limit of the dead- zone and ArL is the lower limit of the dead- zone)	30 or 30.0
l I	Integral Time	0999 Seconds	Integral action time constant, the more the value of I, the less the Integral action I=0 is PD Control, Ar is for eliminate the steady state error and reset	240
d d	Differential Time	0999 Seconds	Differential time: The more the Value of D, the more the differential action, which can overcome overshoot (D=0 is PI Control)	60
Ar	Overshoot restrain (Proportion re-set) (Insensitive interval of ON/OFF Control)	0(0.0)~ 100%(100.0%	PID: Used to restrain Overshoot (Ar is set t $1.5 \sim 2$ times of the output empty ratio in th steady state of the system) ON/OFF control: Ar is divided into ArH and ArL, ArH is the upper limit of the dead- zone and ArL is the lower limit of the dead- zone.	100
Г Т	Control Cycle	1100 Seconds	When the relay output≮20s,SSR and Si-controlled switch transwitch≮2s, continuous output T is equal to 1s, only acting on heating side	20
Рь Рь	Offset of the Process Value	Full Range	Using for correct the measurement error caused by the sensor and the compensate line of the thermocouple	0 or 0.0
LCK	Coded lock	000,001, 002	000: All parameters can be updated001: Only the Set Point Value can be updated002: All parameters cannot be updated	000

Note: Each function parameter in the table can change the control output.

5.3 Illustration and Description of Alarms

Code	Alarm Type	The following two sets of Alarm (ALM1, ALM2) are independent with each other			
coue	Marin Type	Alarm 1 (ALM1) Output	Alarm 2 (ALM2) Output		
1	Upper Limit Deviation Alarm	SPI AL1 PV	SP AL2 PV		
2	Lower Limit Deviation Alarm	AL1 SP PV	AL2 SP PV		
3	Upper/Lower Limit Deviation Alarm (With Hold)	PV SP PV	AL2 AL2		
4	Upper Limit Absolute Value Alarm	AL1 PV	AL2 PV		
5	Lower Limit Absolute Value Alarm		AL2 PV		
6	Upper/Lower Limit Deviation range Value Alarm	SP	AL2 AL2		

VI. Service and Maintenance

• This controller is under warranty for 12 months since the day of purchase (the warranty only stands if the problem is caused by the malfunction due to manufacturing). Any repairment for damages caused by improper use of the controller will be charged. The controller is provided with lifetime maintenance and repair on cost.

• Please keep the controller in a dry place with air and NO corrosive gas.

Shanghai YataiAddress: 128 Zhenyuan Road, Shanghai, ChinaTel: +8621- 66186368/66186369 (Chinese)
+8621- 66186386 (English)Instrumentation Co.,LtdFax: +8621- 66186226Email: yatai@yatai.sh.cnWebsite: http://www.yatai.sh.cnTechnical Support: +862136160962 (Chinese)